Orthogonal Projection#

The point in a subspace \(U \subset \mathbb{R}^n\) nearest to \(\boldsymbol{x} \in \mathbb{R}^n\) is the projection \(\mathrm{proj}_U (\boldsymbol{x})\) of \(\boldsymbol{x}\) onto \(U\).

../_images/02_03_01.png

Projection onto a Vector#

The projection of a vector \(\boldsymbol{x}\) onto a vector \(\boldsymbol{u}\) is

\[ \mathrm{proj}_{\boldsymbol{u}}(\boldsymbol{x}) = \frac{\langle \boldsymbol{x} , \boldsymbol{u} \rangle}{\langle \boldsymbol{u} , \boldsymbol{u} \rangle} \boldsymbol{u} \]

Projection onto \(\boldsymbol{u}\) is given by matrix multiplication

\[ \mathrm{proj}_{\boldsymbol{u}}(\boldsymbol{x}) = P \boldsymbol{x} \ \ \text{where} \ \ P = \frac{1}{\| \boldsymbol{u} \|^2} \boldsymbol{u} \boldsymbol{u}^T \]

Note that \(P^2 = P\), \(P^T = P\) and \(\mathrm{rank}(P) = 1\).

Orthogonal Bases#

Let \(U \subseteq \mathbb{R}^n\) be a subspace. A set of vectors \(\{ \boldsymbol{w}_1,\dots,\boldsymbol{w}_m \}\) is an orthogonal basis for \(U\) if it is a basis for \(U\) and the vectors are orthogonal, \(\langle \boldsymbol{w}_i , \boldsymbol{w}_j \rangle = 0\) for all \(i \not= j\). Furthermore, if each \(\boldsymbol{w}_j\) is a unit vector, \(\|\boldsymbol{w}_j\| = 1\), then \(\{ \boldsymbol{w}_1,\dots,\boldsymbol{w}_m \}\) is an orthonormal basis for \(U\).

Let \(\{ \boldsymbol{u}_1 , \dots , \boldsymbol{u}_m \}\) be a basis of a subspace \(U \subseteq \mathbb{R}^n\). The Gram-Schmidt orthogonalization algorithm constructs an orthogonal basis of \(U\):

\[\begin{split} \begin{align*} \boldsymbol{v}_1 &= \boldsymbol{u}_1 \\ \boldsymbol{v}_2 &= \boldsymbol{u}_2 - \mathrm{proj}_{\boldsymbol{v}_1}(\boldsymbol{u}_2) \\ \boldsymbol{v}_3 &= \boldsymbol{u}_3 - \mathrm{proj}_{\boldsymbol{v}_1}(\boldsymbol{u}_3) - \mathrm{proj}_{\boldsymbol{v}_2}(\boldsymbol{u}_3) \\ & \ \ \vdots \\ \boldsymbol{v}_m &= \boldsymbol{u}_m - \mathrm{proj}_{\boldsymbol{v}_1}(\boldsymbol{u}_m) - \mathrm{proj}_{\boldsymbol{v}_2}(\boldsymbol{u}_m) - \cdots - \mathrm{proj}_{\boldsymbol{v}_{m-1}}(\boldsymbol{u}_m) \end{align*} \end{split}\]

Then \(\{ \boldsymbol{v}_1 , \dots , \boldsymbol{v}_m \}\) is an orthogonal basis of \(U\). Furthermore, let

\[ \boldsymbol{w}_k = \frac{\boldsymbol{v}_k}{\| \boldsymbol{v}_k \|} \ \ , \ k=1,\dots,m \]

Then \(\{ \boldsymbol{w}_1 , \dots , \boldsymbol{w}_m \}\) is an orthonormal basis of \(U\).

Construct an orthonormal basis of the subspace \(U\) spanned by

\[\begin{split} \boldsymbol{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \hspace{5mm} \boldsymbol{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} \hspace{5mm} \boldsymbol{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \end{split}\]

Compute

\[\begin{split} \begin{align*} \boldsymbol{v}_1 &= \boldsymbol{u}_1 \\ \boldsymbol{v}_2 &= \boldsymbol{u}_2 - \mathrm{proj}_{\boldsymbol{v}_1}(\boldsymbol{u}_2) \\ \boldsymbol{v}_3 &= \boldsymbol{u}_3 - \mathrm{proj}_{\boldsymbol{v}_1}(\boldsymbol{u}_3) - \mathrm{proj}_{\boldsymbol{v}_2}(\boldsymbol{u}_3) \end{align*} \end{split}\]

and we find an orthogonal basis

\[\begin{split} \boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \hspace{5mm} \boldsymbol{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \hspace{5mm} \boldsymbol{v}_3 = \frac{1}{2} \left[ \begin{array}{r} 1 \\ 0 \\ -1 \\ 0 \end{array} \right] \end{split}\]

and an orthonormal basis

\[\begin{split} \boldsymbol{w}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \hspace{5mm} \boldsymbol{w}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \hspace{5mm} \boldsymbol{w}_3 = \frac{1}{\sqrt{2}} \left[ \begin{array}{r} 1 \\ 0 \\ -1 \\ 0 \end{array} \right] \end{split}\]

Projection onto a Subpsace#

Let \(U \subseteq \mathbb{R}^n\) be a subspace and let \(\{ \boldsymbol{u}_1, \dots, \boldsymbol{u}_m \}\) be an orthogonal basis of \(U\). The projection of a vector \(\boldsymbol{x}\) onto \(U\) is

\[ \mathrm{proj}_U(\boldsymbol{x}) = \frac{\langle \boldsymbol{x} , \boldsymbol{u}_1 \rangle}{ \langle \boldsymbol{u}_1 , \boldsymbol{u}_1 \rangle } \boldsymbol{u}_1 + \cdots + \frac{\langle \boldsymbol{x} , \boldsymbol{u}_m \rangle}{ \langle \boldsymbol{u}_m , \boldsymbol{u}_m \rangle } \boldsymbol{u}_m \]

Projection onto \(U\) is given by matrix multiplication

\[ \mathrm{proj}_{\boldsymbol{U}}(\boldsymbol{x}) = P \boldsymbol{x} \ \ \text{where} \ \ P = \frac{1}{\| \boldsymbol{u}_1 \|^2} \boldsymbol{u}_1 \boldsymbol{u}_1^T + \cdots + \frac{1}{\| \boldsymbol{u}_m \|^2} \boldsymbol{u}_m \boldsymbol{u}_m^T \]

Note that \(P^2 = P\), \(P^T = P\) and \(\mathrm{rank}(P) = m\).

A matrix \(P\) is an orthogonal projector (or orthogonal projection matrix) if \(P^2 = P\) and \(P^T = P\).

Let \(P\) be the orthogonal projection onto \(U\). Then \(I - P\) is the orthogonal projection matrix onto \(U^{\perp}\).

Find the orthogonal projection matrix \(P\) which projects onto the subspace spanned by the vectors

\[\begin{split} \boldsymbol{u}_1 = \left[ \begin{array}{r} 1 \\ 0 \\ -1 \end{array} \right] \hspace{5mm} \boldsymbol{u}_2 = \left[ \begin{array}{r} 1 \\ 1 \\ 1 \end{array} \right] \end{split}\]

Compute \(\langle \boldsymbol{u}_1 , \boldsymbol{u}_2 \rangle = 0\) therefore the vectors are orthogonal. Compute

\[\begin{split} \begin{align*} P &= \frac{1}{\| \boldsymbol{u}_1 \|^2} \boldsymbol{u}_1 \boldsymbol{u}_1^T + \frac{1}{\| \boldsymbol{u}_2 \|^2} \boldsymbol{u}_2 \boldsymbol{u}_2^T \\ &= \frac{1}{2} \left[ \begin{array}{r} 1 \\ 0 \\ -1 \end{array} \right] \left[ \begin{array}{rrr} 1 & 0 & -1 \end{array} \right] + \frac{1}{3} \left[ \begin{array}{r} 1 \\ 1 \\ 1 \end{array} \right] \left[ \begin{array}{rrr} 1 & 1 & 1 \end{array} \right] \\ &= \frac{1}{2} \left[ \begin{array}{rrr} 1 & \phantom{+}0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{array} \right] + \frac{1}{3} \left[ \begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right] = \frac{1}{6} \left[ \begin{array}{rrr} 5 & \phantom{+}2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{array} \right] \end{align*} \end{split}\]

Find the orthogonal projection matrix \(P_{\perp}\) which projects onto \(U^{\perp}\) where \(U\) the subspace spanned by the vectors

\[\begin{split} \boldsymbol{u}_1 = \left[ \begin{array}{r} 1 \\ 0 \\ -1 \end{array} \right] \hspace{5mm} \boldsymbol{u}_2 = \left[ \begin{array}{r} 1 \\ 1 \\ 1 \end{array} \right] \end{split}\]

as in the previous example. Compute

\[\begin{split} \begin{align*} P_{\perp} = I - P &= \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] - \frac{1}{6} \left[ \begin{array}{rrr} 5 & \phantom{+}2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{array} \right] \\ &= \frac{1}{6} \left[ \begin{array}{rrr} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{array} \right] \end{align*} \end{split}\]

Note that

\[\begin{split} \boldsymbol{u}_3 = \left[ \begin{array}{r} 1 \\ -2 \\ 1 \end{array} \right] \end{split}\]

is orthogonal to both \(\boldsymbol{u}_1\) and \(\boldsymbol{u}_2\) and is a basis of the orthogonal complement \(U^{\perp}\). Therefore we could also compute

\[\begin{split} \begin{align*} P_{\perp} = \frac{1}{\| \boldsymbol{u}_3 \|^2} \boldsymbol{u}_3 \boldsymbol{u}_3^T &= \frac{1}{6} \left[ \begin{array}{r} 1 \\ -2 \\ 1 \end{array} \right] \left[ \begin{array}{ccc} 1 & -2 & 1 \end{array} \right] \\ &= \frac{1}{6} \left[ \begin{array}{rrr} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{array} \right] \end{align*} \end{split}\]

Projection Theorem#

Let \(U \subseteq \mathbb{R}^n\) be a subspace and let \(\boldsymbol{x} \in \mathbb{R}^n\). Then

\[ \boldsymbol{x} - \mathrm{proj}_U(\boldsymbol{x}) \in U^{\perp} \]

and \(\mathrm{proj}_U(\boldsymbol{x})\) is the closest vector in \(U\) to \(\boldsymbol{x}\) in the sense that

\[ \| \boldsymbol{x} - \mathrm{proj}_U(\boldsymbol{x}) \| < \| \boldsymbol{x} - \boldsymbol{y} \| \hspace{5mm} \text{ for all } \boldsymbol{y} \in U \ , \ \boldsymbol{y} \not= \mathrm{proj}_U(\boldsymbol{x}) \]

Exercises#

Let \(\boldsymbol{u}\) and \(\boldsymbol{v}\) be nonzero column vectors in \(\mathbb{R}^n\) such that \(\langle \boldsymbol{u} , \boldsymbol{v} \rangle = 0\) and let

\[ P = \frac{1}{\| \boldsymbol{u} \| \| \boldsymbol{v} \|} \boldsymbol{v} \boldsymbol{u}^T \]

Determine whether the statement is True or False.

  • \(\mathrm{rank}(P) = 1\)

  • \(P^2\) is the identity matrix

  • \(P^2\) is the zero matrix

  • \(P \boldsymbol{x}\) is the projection \(\boldsymbol{x}\) onto \(\boldsymbol{u}\)

  • \(P \boldsymbol{x}\) is the projection \(\boldsymbol{x}\) onto \(\boldsymbol{v}\)

  • \(P \boldsymbol{u} = c \boldsymbol{v}\) for some nonzero number \(c\)

Solution
  • True

  • False

  • True

  • False

  • False

  • True

Let \(U \subset \mathbb{R}^n\) be a subspace. Let \(P_1\) be the orthogonal projector onto \(U\) and let \(P_2\) be the orthogonal projector onto the orthogonal complement \(U^{\perp}\). Determine whether the statement is True or False.

  • \(I = P_1 + P_2\)

  • \(P_1P_2 = P_2P_1 = 0\)

Solution
  • True

  • True

Let \(U \subset \mathbb{R}^3\) be the subspace spanned by

\[\begin{split} \boldsymbol{u}_1 = \left[ \begin{array}{r} 1 \\ 1 \\ 1 \end{array} \right] \hspace{10mm} \boldsymbol{u}_2 = \left[ \begin{array}{r} -1 \\ 1 \\ 1 \end{array} \right] \end{split}\]

Find the vector in \(U\) which is closest to the vector

\[\begin{split} \boldsymbol{x} = \left[ \begin{array}{r} 1 \\ 2 \\ 1 \end{array} \right] \end{split}\]
Solution
\[\begin{split} \mathrm{proj}_U(\boldsymbol{x}) = \begin{bmatrix} 1 \\ 3/2 \\ 3/2 \end{bmatrix} \end{split}\]

Let \(U \subset \mathbb{R}^3\) be the subspace spanned by

\[\begin{split} \boldsymbol{u}_1 = \left[ \begin{array}{r} 1 \\ 1 \\ 1 \end{array} \right] \hspace{10mm} \boldsymbol{u}_2 = \left[ \begin{array}{r} 1 \\ 2 \\ 1 \end{array} \right] \end{split}\]

Find the shortest distance from \(\boldsymbol{x}\) to \(U\) where

\[\begin{split} \boldsymbol{x} = \left[ \begin{array}{r} 1 \\ 1 \\ 2 \end{array} \right] \end{split}\]
Solution
\[ \| \boldsymbol{x} - \mathrm{proj}_U(\boldsymbol{x}) \| = \frac{1}{\sqrt{2}} \]

Let \(\boldsymbol{u} \in \mathbb{R}^n\) be a nonzero vector and let

\[ H = I - \frac{2}{\| \boldsymbol{u} \|^2}\boldsymbol{u} \boldsymbol{u}^T \]

The matrix \(H\) is called an elementary reflector. Determine whether the statement is True or False.

  • There is a unique unit vector \(\boldsymbol{v}\) such that \(H \boldsymbol{v} = \boldsymbol{v}\).

  • \(H \boldsymbol{v} = \boldsymbol{v}\) for all \(\boldsymbol{v} \in \mathrm{span} \{ \boldsymbol{u} \}^{\perp}\).

Solution
  • False

  • True